Stat 515: Introduction to Statistics

Chapter 11

Let's Review Lines

- A line is the shortest distance between two points. It has no curve, no thickness and it extends both ways indefinitely.
- The equation has the following forms
- Slope Intercept: $y=m * x+b$
- Point-Slope: $\left(y-y_{1}\right)=m *\left(x-x_{1}\right)$

Lines

- The y-axis runs vertically where $x=0$
- The \mathbf{x}-axis runs horizontally where $\mathrm{y}=0$.

Lines

- The Y -intercept is where the line crosses the y axis and can be found by plugging in $\mathrm{x}=0 \rightarrow$ $y=m(0)+b=b$. So, b is the Y-intercept.
- This is important because it is the value the dependent (response) variable takes when the independent (explanatory) variable is zero
- The X-intercept is where the line crosses the x axis and can be found by plugging in $y=0 \rightarrow$ $0=m x+b \rightarrow m x=(-b) \rightarrow x=(-b) / m$.

Lines

- The slope (m) is a measurement of how the line changes; it is the number that multiplies x. It can be thought of as the change in y for every unit change in x,
- ie. the change in y for every increase of one in x.
- It can be calculated using any two points on the line $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ as below, but it is given by the m term in the equation for the line.
- Slope $=m=\frac{\text { Rise }}{\text { Run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Regression - Making Lines Useful!

- Unlike the lines we learned in math, our data won't fit the line exactly
- Math: deterministic model
- Stats: probabilistic model
- Regression Line - predicts the value for the response variable y as a straight line function of the value of x, the explanatory variable, with some random error

Association of Variables - Two Categorical Variables

- Response Variable - this is our dependent variable, the outcome variable on which comparisons are made
- Explanatory Variable - this is our independent variable, the groups to be compared with respect to values on the response variable
- Think "we use the explanatory variable to EXPLAIN what's going on with the response variable."

Examples

- Example 1:
- Response: Age of death (quantitative)
- Explanatory: Cigarettes smoked per day (quantitative)
- The idea here is that an experimental unit's smoking status gives us some of the information about how long they will live
- Actuaries do this sort of thing - evidence has shown that smoking decreases your life expectancy.

More Definitions

- An association or correlation exists between two variables if a particular value for one variable is more likely to occur with certain values of the other variable
- "Evidence has shown that smoking more decreases your life expectancy."
- Here we say that there is an association between smoking and life expectancy.

Scatterplots

- We can compare two quantitative variables and explore their association or correlation with a scatterplot
- To form a scatterplot we let the response variable be the y variable and the explanatory variable be the x variable and plot the points

Strong positive correlation

Moderate negative correlation

Moderate positive correlation

Strong negative correlation

No correlation

Curvilinear relationship

Coefficient of Correlation (r)

$$
r=\frac{S S_{x y}}{\sqrt{S S_{x x} S S_{y y}}}
$$

Where:

$$
\begin{gathered}
S S_{x y}=\sum(x-\bar{x})(y-\bar{y}) \\
S S_{x x}=\sum(x-\bar{x})^{2}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n} \\
S S_{y y}=\sum(y-\bar{y})^{2}=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}
\end{gathered}
$$

Coefficient of Correlation (r)

- r measures the LINEAR relationship between x and y [linear, linear, linear, linear!!!]
- $r>0 \rightarrow$ positive correlation or association
- $\mathbf{r}<\mathbf{0} \rightarrow$ negative correlation or association
- $r=1 \rightarrow$ perfect positive correlation or association
- Here, all points would fit on a line
- $r=-1 \rightarrow$ perfect negative correlation
- Here, all points would fit on a line
- $\mathbf{r}=\mathbf{0} \boldsymbol{\rightarrow}$ no correlation

Properties

- $-1 \leq r \leq 1$
- The closer r is to 1 the stronger the evidence for positive association
- The closer r is to -1 the stronger the evidence for a negative association
- The closer r is to 0 the weaker the evidence for association
- Affected by outliers so we have to be careful

Coefficient of Correlation Examples

1

- The perfect lines have $r=1$ or $r=-1$ depending on the sign of their slope not the magnitude of the slope
- You might think that the plot in the middle has $r=1$ too because it too is fit perfectly by a line. The catch is that the line would be horizontal, thus having a slope value of zero (no sign.) These dots actually show that the explanatory variable provides no explanation for the response variable.

Coefficient of Correlation Examples

- Again, the perfect lines have $r=1$ or $r=-1$
- The points that don't make perfect lines have decimal values depending on how close they are to a perfect line.
- The closer r is to 1 the stronger the evidence for positive association
- The closer r is to -1 the stronger the evidence for a negative association
- The closer r is to 0 the weaker the evidence for association
- Note: their value changes based on how close they are to forming a line not the magnitude of the slope

Coefficient of Correlation Examples

- Here there are obvious patterns here but they are not linear!
- Since, r, measures the linear relationship between two variables $r=0$ even though there are patterns!
- In each case the best balanced line would be horizontal

Regression - Making Lines Useful!

- Regression Line - we make our regression line so that it best fits our data - unlike math it usually isn't a perfect

$$
y=\beta_{\mathbf{0}}+\beta_{\mathbf{1}} x+\in
$$

- Note: we need to estimate these values with our data

Regression - Making Lines Useful!

- $\widehat{y}=b_{0}+b_{1} * x+\epsilon$
$-\boldsymbol{b}_{\mathbf{0}}$ is the intercept - when $\mathrm{x}=0$
- This is important because it is the expected value of the response variable, y, when $x=0$
$-\boldsymbol{b}_{\boldsymbol{1}}$ is the slope of the line
- This is important because it is the amount that \hat{y} changes when x increases by one unit
$-\widehat{y}$ is the predicted value for some x
$-\epsilon=$ the residual $=($ the real $y)-\hat{y}$

Regression - A Way to Find It

- Least Squares is the most popular method
- It returns the line that has the smallest value for the residual sum of squares in using:
- $\widehat{y}=b_{0}+b_{1} * x+\epsilon$
- Residual Sum of Squares $=\sum(y-\hat{y})^{2}$

Regression - A Way to Find It

- We don't just draw the 'best-fit line' like we might have before this class
- Least squares gives us the solution where the total length of blue lines the smallest

Regression - Least Squares

- We find b_{0} and b_{1} such that we minimize the sum of squared errors. These estimates are called the ordinary least squares estimators we leave this up to software.
- In simple regression
- $\widehat{\boldsymbol{y}}=\boldsymbol{b}_{\mathbf{0}}+\boldsymbol{b}_{\mathbf{1}} * \boldsymbol{x}+\epsilon$
- $b_{0}=y$ intercept $=\hat{y}-b_{1} * \bar{x}$
- $b_{1}=$ slope $=r *\left(\frac{s_{y}}{s_{x}}\right)$

Coefficient of Correlation (r)

$$
\begin{aligned}
r^{2}= & \frac{\text { Explained sample variability }}{\text { total variability }} \\
& =\frac{S S_{y y}-S S E}{S S_{y y}}=1-\frac{S S E}{S S_{y y}}
\end{aligned}
$$

Where:

$$
\begin{gathered}
S S_{x y}=\sum(x-\bar{x})(y-\bar{y}) \\
S S E=\sum\left(y_{i}-\hat{y}\right)^{2}
\end{gathered}
$$

When Can We Use Regression?

- $\boldsymbol{R}^{\mathbf{2}}$, given in the regression output, gives the percent of variation in the response variable explained by the explanatory variable
- Note: $R^{2}=r^{2}$
- Note: $r=\sqrt{R^{2}}$

When Can We Use Regression?

- The scatterplot must show a fairly linear relationship
- A rule of thumb is to look for a coefficient of correlation, $r>.7$ or $r<-.7$
- Equivalently, a rule of thumb is to look for a coefficient of correlation, $R^{2}>.49$

When Can We Use Regression?

- Assumptions on \in
- \in is normally distributed
- $E(E)=0$
- $\operatorname{Var}(\epsilon)=\sigma_{\epsilon}^{2}$
- Each error, \in, is independent
- We makes these assumptions so that

$$
E(y)=\beta_{0}+\beta_{1} x
$$

Estimating σ for a Simple Linear Model

$$
\begin{aligned}
s_{\epsilon}^{2} & =\frac{\text { SSE }}{\text { Degrees of Freedom for Error }} \\
& =\frac{\mathrm{SSE}}{\mathrm{n}-2}
\end{aligned}
$$

Where: $S S E=\sum\left(y_{i}-\widehat{y_{i}}\right)^{2}=S S_{y y}-b_{1} S S_{x y}$

Then: $s_{\epsilon}=\sqrt{s_{\epsilon}^{2}}=\sqrt{\frac{\text { SSE }}{n-2}}$

Interpretation of our Estimate of σ

Applying the Empirical Rule:

- We expect approximately 90% of observed y values to lie within $1 s_{\epsilon}$ of the estimate \hat{y}
- We expect approximately 95% of observed y values to lie within $2 s_{\epsilon}$ of the estimate \hat{y}
- We expect approximately 99.7% of observed y values to lie within $3 s_{\epsilon}$ of the estimate \hat{y}

Interpretation of our Estimate of σ

Hypothesis testing for r

Hypothesis Test for Correlation Coefficient: Step 1

- State Hypotheses to some value we're interested in, ρ_{o} - it's usually easier to start with H_{a}
- Null hypothesis: we assume that the population correlation coefficient equals some ρ_{0}
- $H_{o}: \rho \leq \rho_{o}=0$ (one sided test)
- $H_{o}: \rho \geq \rho_{o}=0$ (one sided test)
- $H_{o}: \rho=\rho_{o}=0$ (two sided test)
- Alternative hypothesis: What we're interested in
- $H_{a}: \rho>\rho_{o}=0$ (one sided test)
- $H_{a}: \rho<\rho_{o}=0$ (one sided test)
- Ha: $\rho \neq \rho_{o}=0$ (two sided test)

Hypothesis Test for Correlation Coefficient: Step 2

- Check the assumptions:
- The variables must be normally distributed
- There is a linear relationship between the two variables
- Outliers are either kept to a minimum or removed from the data
- Equal variance across random variables

Hypothesis Test for Coefficients: Step 3

- Calculate Test Statistic, t*
- The test statistic measures how different the sample correlation coefficient we have is from the null hypothesis
- We calculate the t-statistic by assuming that ρ_{o} is the population coefficient (we use $\rho=\rho_{o}=0$)
- n -2 degrees of freedom

$$
t^{*}=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}=\frac{b_{1}}{\sqrt{\frac{\text { SSE }}{\mathrm{n}-2}}}
$$

Hypothesis Test for Coefficients: Step 4

- Determine the P-value
- The P-value describes how unusual the sample data would be if we use $\rho=\rho_{o}$
$-\mathrm{t}^{*}$ is the test statistic from step 3 with $\mathrm{n}-2$ dof

Alternative Hypothesis	Probability	Formula for the P-value
$H_{a}: \beta_{1}>\beta_{1_{o}}$	Right tail	$1-\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)$
$H_{a}: \beta_{1}<\beta_{1_{o}}$	Left tail	$\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)$
$H_{a}: \beta_{1} \neq \beta_{1_{o}}$	Two-tail	$2 \mathrm{P}\left(\mathrm{T}<-\left\|\mathrm{t}^{*}\right\|\right)$

Hypothesis Test for Coefficients: Step 5

- Summarize the test by reporting and interpreting the P-value
- Smaller p-values give stronger evidence against H_{o}
- If p-value $\leq(1-$ confidence $)=\alpha$
- Reject H_{o}, with a p-value =__, we have sufficient evidence that the alternative hypothesis might be true
- If p-value $>(1-$ confidence $)=\alpha$
- Fail to reject H_{o}, with a p-value $=\ldots$, we do not have sufficient evidence that the alternative hypothesis might be true

Using the Sampling Distribution of b_{1}

Confidence Interval for β_{1}

Sampling Distribution of b_{1}

- If the assumptions for \in hold:

$$
\begin{aligned}
\mu_{b_{1}} & =\beta_{1} \\
\sigma_{b_{1}} & =\frac{\sigma_{\epsilon}}{\sqrt{S S_{x x}}} \text { which we estimate with } \frac{s_{\epsilon}}{\sqrt{S S_{x x}}}
\end{aligned}
$$

- We call $\sigma_{b_{1}}$ the estimated standard error of b_{1}

Confidence Intervals for Coefficients

- Check the assumptions:
- \in is normally distributed
- $E(E)=0$
- $\operatorname{var}(E)=\sigma^{2}$
- Each error, \in, is independent
- A 100*(1- α)\% confidence interval for $\boldsymbol{\beta}_{1}$:

$$
b_{1} \pm\left(t_{1-\frac{\alpha}{2}}\right) \widehat{S_{b_{1}}}
$$

Using the Sampling Distribution of b_{1}

Hypothesis Test for β_{1}

Hypothesis Test for Coefficients: Step 1

- State Hypotheses to some value we're interested in, β_{o} - it's usually easier to start with H_{a}
- Null hypothesis: we assume that the population coefficient equals some $\beta_{1_{0}}$
- $H_{o}: \beta_{1} \leq \beta_{1_{o}}$ (one sided test)
- $H_{o}: \beta_{1} \geq \beta_{1_{o}}$ (one sided test)
- $H_{o}: \beta_{1}=\beta_{1_{o}}$ (two sided test)
- Alternative hypothesis: What we're interested in
- $H_{a}: \beta_{1}>\beta_{1_{o}}$ (one sided test)
- $H_{a}: \beta_{1}<\beta_{1_{o}}$ (one sided test)
- $H a: \beta_{1} \neq \beta_{1_{o}}$ (two sided test)

Hypothesis Test for Coefficients: Step 2

- Check the assumptions:
- \in is normally distributed
- $\mathrm{E}(\mathrm{E})=0$
- $\operatorname{Var}(\epsilon)=\sigma_{\epsilon}^{2}$
- Each error, \in, is independent

Hypothesis Test for Coefficients: Step 3

- Calculate Test Statistic, t*
- The test statistic measures how different the sample coefficient we have is from the null hypothesis
- We calculate the t -statistic by assuming that $\beta_{1_{o}}$ is the population coefficient (we use $\beta_{1}=\beta_{1}$)
- n -2 degrees of freedom

$$
t^{*}=\frac{\left(b_{1}-\mu_{b_{1}}\right)}{\sigma_{b_{1}}}=\frac{\left(b_{1}-\beta_{1_{o}}\right)}{\frac{S_{b_{1}}}{\sqrt{S S_{x x}}}}
$$

Hypothesis Test for Coefficients: Step 4

- Determine the \mathbf{P}-value
- The P-value describes how unusual the sample data would be if we use $\beta_{1}=\beta_{1_{0}}$
$-\mathrm{t}^{*}$ is the test statistic from step 3 with $\mathrm{n}-2$ dof

Alternative Hypothesis	Probability	Formula for the P-value
$H_{a}: \beta_{1}>\beta_{1_{o}}$	Right tail	$1-\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)$
$H_{a}: \beta_{1}<\beta_{1_{o}}$	Left tail	$\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)$
$H_{a}: \beta_{1} \neq \beta_{1_{o}}$	Two-tail	$2 \mathrm{P}\left(\mathrm{T}<-\left\|\mathrm{t}^{*}\right\|\right)$

Hypothesis Test for Coefficients: Step 5

- Summarize the test by reporting and interpreting the P-value
- Smaller p-values give stronger evidence against H_{o}
- If p-value $\leq(1-$ confidence $)=\alpha$
- Reject H_{o}, with a p-value =__, we have sufficient evidence that the alternative hypothesis might be true
- If p-value $>(1-$ confidence $)=\alpha$
- Fail to reject H_{o}, with a p-value $=\ldots$, we do not have sufficient evidence that the alternative hypothesis might be true

Hypothesis Test for Coefficients: Step 5

- We get the p-values from R for:

$$
\begin{aligned}
& -H_{o}: \beta_{1}=0 \\
& -H_{a}: \beta_{1} \neq 0
\end{aligned}
$$

- This tests whether or not our explanatory variable is "statistically significant" in modeling the response variable

Using Regression Models for Prediction/Estimation Confidence Intervals

Prediction/Estimation: Sampling Errors

- $\sigma_{y}=\sigma_{\epsilon} \sqrt{\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}}$
- $\sigma_{(y-\hat{y})}=\sigma_{\epsilon} \sqrt{1+\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}}$

Prediction/Estimation: Confidence Interval

$$
\hat{y} \pm t_{1-\frac{\alpha}{2}, n-2} s_{\in} \sqrt{1+\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}}
$$

- We call this a confidence interval for the observed y value of an observation with $\mathrm{x}=x_{p}$
- This gives us a 100*(1- α) confidence interval for an observation with $\mathrm{x}=x_{p}$.

Prediction/Estimation:
 Confidence Interval

$$
\hat{y} \pm t_{1-\frac{\alpha}{2}, n-2} s_{\in} \sqrt{\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}}
$$

- We call this a confidence interval for the mean of observations with $\mathrm{x}=x_{p}$ (Like sampling dist.)
- This gives us a $100^{*}(1-\alpha)$ confidence interval for the mean of observations with $\mathrm{x}=x_{p}$.

Regression Example

- In creating beer yeast and sugar react to create alcohol - the idea being, the more sugar and yeast you add the more alcohol the batch yields. It would then make sense that the more alcohol in the beer the more carbohydrates there are thus more calories but who are we to make such assertions? Let us show it statistically.

Regression Example In R

```
library('xlsx')
fileLocation="C:/Users/Will/Desktop/Beer.xlsx"
titles=TRUE
beerdata <- read.xlsx(fileLocation, 1,header=titles)
alcPer<-beerdata[,3]
calories<-beerdata[,4]
mod<-Im(calories~alcPer)
summary(mod)
anova(mod)
plot(alcPer, calories)
abline(mod)
```


Regression Example

- The points are fit by the line pretty well, but we see that a couple points with alcPer below 1 are strange

Regression Example

```
> summary(mod)
Call:
lm(formula = calories ~ alcPer)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-39.135 & -18.143 & 2.462 & 10.656 & 85.934
\end{tabular}
```


Coefficients:

```
\begin{tabular}{lrrrr} 
& Estimate Std. Error t value Pr (>\|t\|) & \\
(Intercept) & 38.066 & 11.127 & 3.4210 .000908 & \(* * *\) \\
alcPer & 22.015 & 2.302 & \(9.5629 .87 e-16\) & \(\% * *\)
\end{tabular}
```

```
---
```

Signif. codes: 0 v***' 0.001 v**' 0.01 v*' 0.05 '.' 0.1 v ' 1
Residual standard error: 20.82 on 99 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.4801, Adjusted R-squared: 0.4749
F-statistic: 91.44 on 1 and 99 DF, p-value: 9.869e-16

```

\section*{Regression Example}
\(>\) summary (mod)

\section*{Call:}
lm(formula \(=\) calories \(\sim\) alcPer)
This gives us the estimates to build our equation:
\[
\hat{y}=b_{0}+b_{1} x=38.066+22.015 x
\]

Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-39.135 & -18.143 & 2.462 & 10.656 & 85.934
\end{tabular}

Coefficients:


Signif. codes: 0 '****' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 20.82 on 99 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.4801, Adjusted R-squared: 0.4749
F-statistic: 91.44 on 1 and 99 DF, p-value: \(9.869 \mathrm{e}-16\)

\section*{Regression Exannole}
\(>\) summary (mod)

\section*{Cal1:}
lm(formula \(=\) calories \(\sim\) alcPer)
\[
\begin{aligned}
& s_{b_{0}}=11.127 \\
& s_{b_{1}}=2.302
\end{aligned}
\]

The standard error of each estimate can be used in hypothesis testing or confidence intervals.

Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-39.135 & -18.143 & 2.462 & 10.656 & 85.934
\end{tabular}

Coefficients:


Residual standard error: 20.82 on 99 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.4801 , Adjusted R-squared: 0.4749 F-statistic: 91.44 on 1 and 99 DF, p-value: \(9.869 \mathrm{e}-16\)

\section*{Regression Example}
\(>\) summary (mod)

Call:
lm(formula \(=\) calories \(\sim\) alcPer)

Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-39.135 & -18.143 & 2.462 & 10.656 & 85.934
\end{tabular}

Coefficients:
Estimate Std. Error
(Intercept)
\(38.066 \quad 11.127\)
alcPer
22.015
2.302

Here, our pvalues are small so we know both estimates are non-zero

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 20.82 on 99 degrees of freedom (1 observation deleted due to missingness)
Multiple R-squared: 0.4801, Adjusted R-squared: 0.4749 F-statistic: 91.44 on 1 and 99 DF, p-value: \(9.869 \mathrm{e}-16\)

\section*{Refression Exannele}
\(>\) summary (mod)
```

Cal1:
lm(formula = calories ~ alcPer)

$$
\begin{aligned}
& s_{E}=20.82 \\
& R^{2}=0.4801
\end{aligned}
$$

```

Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-39.135 & -18.143 & 2.462 & 10.656 & 85.934
\end{tabular}

Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 38.066 & 11.127 & \(3.4210 .000908 * * *\) \\
alcPer & 22.015 & 2.302 & \(9.5629 .87 e-16 * * *\)
\end{tabular}

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
Residual standard error: 20.82 on 99 degrees of freedom (1 observation deleted due to missingness)
Multiple R-squared: 0.4801 Adjusted R-squared: 0.4749

F-statistic: 91.44 on 1 and 99 DF, p-value: \(9.869 \mathrm{e}-16\)

\section*{Regression Exannole}
\(>\) summary (mod)

Cal1:
lm(formula \(=\) calories \(\sim\) alcPer)

This reports the F test, testing the following hypothesis:
\[
H_{0}: b_{1}=b_{2}=\ldots=b_{k}=0
\]

Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-39.135 & -18.143 & 2.462 & 10.656 & 85.934
\end{tabular}

Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
(Intercept) \(38.066 \quad 11.127 \quad 3.4210 .000908 * * *\)
alcPer \(22.015 \quad 2.302\) 9.562 9.87e-16 ***
---
Signif. codes: \(0{ }^{1 * * * \prime} 0.001^{v * * \prime} 0.01{ }^{\prime * \prime} 0.05{ }^{\prime *} 0.1\), ' 1

Residual standard error: 20.82 on 99 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.4801 , Adjusted R-squared: 0.4749
F-statistic: 91.44 on 1 and 99 DF , p-value: \(9.869 \mathrm{e}-16\)

\section*{Regression Example}
```

> anova(mod)
Analysis of Variance Table
Response: calories
Df Sum Sq Mean Sq F value Pr (>F)
alcPer 1 39649 39649 91.435 9.869e-16 %**
Resicluals 99 42929 434
Signif. codes: 0 v***' 0.001 ***' 0.01 **' 0.05 v.' 0.1 v' 1

```

\section*{Regression Example}
```

> anova (mod)
Analysis of Variance Table
Response: calories
This reports the F test, testing
the following hypothesis:
H}:\mp@subsup{b}{1}{}=\mp@subsup{b}{2}{}=···=\mp@subsup{b}{k}{}=
alcPer 1 39649 39649 91.435 9.869e-16 ***
Residuals 99 42929 434
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1

```

\section*{Regression Example}
\(>\) anova (mod) ..... SSR
Analysis of Variance Table ..... SSE
Response: caloriesMSRDf Sum Sq Mean Sq \(F\) value \(\operatorname{Pr}(>F)\)
\begin{tabular}{lrrrrrr} 
alcPer & 1 & 39649 & 39649 & 91.435 & \(9.869 \mathrm{e}-16\) & *** \\
Residuals & 99 & 42929 & 434 & & &
\end{tabular}Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\section*{Regression Example}
- \(\widehat{y}=38.066+22.015 * x+\epsilon\)
- Where \(\widehat{\boldsymbol{y}}\) is the estimated calories and \(\mathbf{x}\) is the alcPer
- The overall \(F\) test has a very low \(p\)-value so our model is capturing something
- \(r=\sqrt{R^{2}}=\sqrt{.4801}=.6928925\) is close compared to our .7 benchmark so we have an "okay" model
- The \(P(>|t|)\) is small for alcPer so it is significant in terms of it's ability to predict or model calories

\section*{Regression Example}
- \(S S E=\sum\left[y_{i}-\left(b_{0}+b_{1} x\right)\right]^{2}\)
- \(S S_{x y}=\sum x_{i} y_{i}-\frac{\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n}\)
- \(S S_{x x}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}\)
- Recall: \(b_{1}=\) slope \(=\frac{s s_{x y}}{s s_{x x}}=r *\left(\frac{s_{y}}{s_{x}}\right)\)

\section*{Regression Example}
```


\#recall regression line is vhat=38.066+22.015*alcPer

>sum((calories-(38.066+22.015*alcPer))^2)
[1] 42929.25
> sum(calories*alcPer)-(sum(calories)*sum(alcPer))/nrow(beerdata)
[1] 1800.977
> sum(alcPer^2)-(sum(alcPer))^2/nrow(beerdata)
[1] 81.80595
> 1800.977/81.80595
[1] 22.01523
sum((calories-(38.066+22.015*alcPer))^2) \#SSE sum(calories*alcPer)-(sum(calories)*sum(alcPer))/nrow(beerdata) \#\#SSxy sum(alcPer^2)-(sum(alcPer))^2/nrow(beerdata) \#\#SSxx 1800.977/81.80595 \#\#B1

```

\section*{Regression Example}
- \((\) Est Calories \()=38.066+22.015 *(\) Alcohol \(\%)\)
- \(\boldsymbol{b}_{\mathbf{0}}=38.066\) is the intercept
- The expected number of calories of a beer with \(0 \%\) alcohol is 38.066 .
- \(\boldsymbol{b}_{\mathbf{1}}=22.015\) is the slope of the line
- For every additional percent in alcohol percentage in beer we expect the number of calories to increase by 22.015 on average.

\section*{Confidence Intervals for Coefficients}
- A 100*(1- \(\alpha\) )\% confidence interval for \(\boldsymbol{\beta}_{\mathbf{1}}\) :
\[
\begin{gathered}
b_{1} \pm\left(t_{1-\frac{.05}{2}, 101-2}\right) \widehat{s_{b_{1}}} \\
22.015 \pm(1.984217)(2.302) \\
(17.44733,26.58267)
\end{gathered}
\]

We are \(95 \%\) confident that the true population coefficient, \(\beta_{1}\), is between 17.45 and 26.58 .

\section*{Hypothesis Testing for paired data \(\mu\) unknown \(\sigma_{d}\)}
\begin{tabular}{l|l} 
Step One: & \begin{tabular}{l}
\(H_{0}: \beta_{1}=23\) \\
\(H_{a}: \beta_{1} \neq 23\)
\end{tabular} \\
Step Two: & \begin{tabular}{l} 
1. \(\in\) is normally distributed \\
2. \(\mathrm{E}(\in)=0\) \\
3. \(\operatorname{Var}(\in)=\sigma_{\epsilon}^{2}\) \\
4. Each error, \(\in\), is independent
\end{tabular} \\
\(\qquad\) Step Three: & \(t^{*}=\frac{(22.015-23)}{2.302}=-.4278888\) \\
Step Four: & \(H_{a}: \beta_{1} \neq 23 \rightarrow \mathrm{p}\)-value \(=2^{*} \mathrm{P}(\mathrm{T}<-|-.4278888|)=.669662\) \\
Step Five: & \(.669662>(1-.95)=.05 \rightarrow\) Fail to Reject \(H_{0}\) \\
\hline
\end{tabular}

\section*{Regression Example}
- \((\) Est Calories \()=38.066+22.015 *(\) Alcohol \(\%)\)
- \(R^{2}=.4801\)
- \(48.01 \%\) of the variation in calories in beer is explained by alcohol
- \(r=\sqrt{R^{2}}=\sqrt{.4801}=.6928925\)
- Since \(r\) is very close to one we have a very strong positive correlation

\section*{Regression Exannole}
\begin{tabular}{|c|c|}
\hline Step One: & \[
\begin{aligned}
& \mathrm{H}_{0}: \rho \leq 0 \\
& \mathrm{H}_{\mathrm{a}}: \rho>0
\end{aligned}
\] \\
\hline Step Two: & \begin{tabular}{l}
1. The variables must be normally distributed \\
2. There is a linear relationship between the two variables \\
3. Outliers are either kept to a minimum or removed from the data \\
4. Equal variance across random variables
\end{tabular} \\
\hline Step Three: & \[
\mathrm{t}^{*}=\frac{\mathrm{r} \sqrt{\mathrm{n}-2}}{\sqrt{1-\mathrm{r}^{2}}}=\frac{(.6928925 \sqrt{101-2})}{\sqrt{1-.4801}}=9.561445
\] \\
\hline Step Four: & \(\mathrm{H}_{\mathrm{a}}: \rho>0 \rightarrow \mathrm{p}\)-value \(=P(\mathrm{~T}>9.561445)=1-\mathrm{P}(\mathrm{T}<9.561445) \approx 0\) \\
\hline Step Five: & \(0 \leq(1-.95)=.05 \rightarrow\) Reject \(\mathrm{H}_{0}\) \\
\hline
\end{tabular}

\section*{Regression Example}
- If we wanted to estimate the calories of my favorite beer, Rogue Dead Guy, we can plug in its alcohol percentage into the equation to find an estimate of the calories.
- If the Alcohol \% = 6.5\% for Rogue Dead Guy we can plug it in to find the estimated calories of Rogue Dead Guy.
- \((\) Est Calories) \(=38.066+22.015 *\) (Alcohol \%)
\[
\begin{aligned}
& =38.066+22.015 *(6.5) \\
& =181.1635
\end{aligned}
\]

\section*{Regression Example}
- So, the estimated amount of calories for Rogue Dead Guy is 181.163587.
- In fact, the actual amount of calories is 250 so our estimate isn't very good, though it might be better than a random guess.
- The residual is the difference
- true - estimate \(=250-181.163587=68.83641\).

\section*{Regression Example}
\[
\begin{array}{r}
\hat{y} \pm t_{1-\frac{.05}{2}, 101-2} s_{\in} \sqrt{\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}} \\
181.1635 \pm(1.984217)(20.82) \sqrt{\frac{1}{101}+\frac{(6.5-4.738416)^{2}}{81.80595}} \\
(172.1283,190.1987)
\end{array}
\]

We are 95\% confident that the true mean, \(y\), of all observations of alcPer 6.5 is between 172.1283 and 190.1987

\section*{Regression Example}
\[
\begin{array}{r}
\hat{y} \pm t_{1-\frac{.05}{2}, 101-2} s_{\in} \sqrt{1+\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}} \\
181.1635 \pm(1.984217)(20.82) \sqrt{1+\frac{1}{101}+\frac{(6.5-4.738416)^{2}}{81.80595}} \\
(138.8756,223.4514)
\end{array}
\]

We are \(95 \%\) confident that the true value, \(y\), of an observation of alcPer 6.5 is between 138.8756 and 223.4514 .

\section*{Regression Example}
- Issues:
- Look at the data: was that "weird point" an outlier? Is it representative?
- What happens if we "fix" it or remove it from the data set?
- Did we prove that alcPer causes calories in beer?
- Is our model okay to use with a beer that has 6.5\% alcohol percentage?

\section*{Regressions - Problems}
- Extrapolation - We don't want to predict using \(x\) values different than the known data
- Influential Outliers - a single point can really change the fit of the regression line - always check for stray points in the scatterplot
- Correlation does not imply causation - wait for it
- Lurking Variables - a variable that we don't look at that causes the correlation (hot summers)

\section*{Regressions - Problems}

MY HOBBY: EXTRAPOLATING


Credit: XKCD

\section*{Correlation vs. Causation}
- The idea here is that although some variables are correlated they one might not be the cause of the other.
- Let's revisit http://www.tylervigen.com/?categoria=\%22di nero\%22

\section*{Regressions - Problems}
- Correlation does not imply causation
- We go from saying there exists a correlation to saying that one variable's change causes the other to change.


THEN I TOCK A STATISTICS CLASS. NOW I DON'T.


SOUNDS LIKE THE CLASS HELPED.


Credit: XKCD

\section*{Regression Introduction}
- Set up and example using Facebook!*
- https://www.youtube.com/watch?v=zPG4NjikCjc

\section*{Summary!}
\begin{tabular}{l|l} 
Response Variable & \begin{tabular}{l} 
this is our dependent variable, the \\
outcome variable on which \\
comparisons are made
\end{tabular} \\
\hline Explanatory Variable & \begin{tabular}{l} 
this is our independent variable, \\
the groups to be compared with \\
respect to values on the response \\
variable
\end{tabular} \\
\hline Association or Correlation & \begin{tabular}{l} 
exists between two variables if a \\
particular value for one variable is \\
more likely to occur with certain \\
values of the other variable
\end{tabular} \\
\hline
\end{tabular}

\section*{Comparing Two Quantitative Variables}
\begin{tabular}{l|l|}
\hline Scatterplot & \begin{tabular}{l} 
let the response variable be the \(y\) \\
variable and the explanatory variable be \\
the \(x\) variable and plot the points
\end{tabular} \\
\hline Regression Line & \begin{tabular}{l} 
predicts the value for the response \\
variable \(y\) as a straight line function of \\
the value of \(x\), the explanatory variable \\
\(\widehat{\boldsymbol{y}}=\boldsymbol{b}_{\mathbf{1}} * \boldsymbol{x}+\boldsymbol{b}_{\mathbf{0}}\)
\end{tabular} \\
\hline Intercept & \begin{tabular}{l}
\(\boldsymbol{b}_{\mathbf{0}}\) this is the expected value of y when x \\
is zero
\end{tabular} \\
\hline Slope & \begin{tabular}{l}
\(\boldsymbol{b}_{\mathbf{1}}\) this is the amount that \(\hat{\boldsymbol{y}}\) changes by \\
when x increases by one unit
\end{tabular} \\
\hline
\end{tabular}

\section*{Comparing Two Quantitative Variables}
\(\boldsymbol{R}^{\mathbf{2}}=r^{2}\)
\(\boldsymbol{r}=\sqrt{R^{2}}\)
Estimate \(\widehat{\boldsymbol{y}}\) for a given \(\mathbf{x}\)

Residual
gives the percent of variation in \(y\) explained by \(x\)
measures the LINEAR relationship between \(x\) and \(y\)
Plug x into the regression equation
\[
\widehat{y}=b_{1} * x+b_{0}
\]

Residual \(=(\) the real \(\mathbf{y})-\widehat{\boldsymbol{y}}\)

\section*{Coefficient of Correlation (r)}
\[
r=\frac{S S_{x y}}{\sqrt{S S_{x x} S S_{y y}}}
\]

Where:
\[
\begin{gathered}
S S_{x y}=\sum(x-\bar{x})(y-\bar{y}) \\
S S_{x x}=\sum(x-\bar{x})^{2}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n} \\
S S_{y y}=\sum(y-\bar{y})^{2}=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}
\end{gathered}
\]

\section*{Coefficient of Correlation (r)}
- \(r\) measures the LINEAR relationship between \(x\) and y [linear, linear, linear, linear!!!]
- \(r>0 \rightarrow\) positive correlation or association
- \(\mathbf{r}<\mathbf{0} \rightarrow\) negative correlation or association
- \(r=1 \rightarrow\) perfect positive correlation or association
- Here, all points would fit on a line
- \(r=-1 \rightarrow\) perfect negative correlation
- Here, all points would fit on a line
- \(\mathbf{r}=\mathbf{0} \boldsymbol{\rightarrow}\) no correlation

\section*{Properties}
- \(-1 \leq r \leq 1\)
- The closer \(r\) is to 1 the stronger the evidence for positive association
- The closer \(r\) is to -1 the stronger the evidence for a negative association
- The closer \(r\) is to 0 the weaker the evidence for association
- Affected by outliers so we have to be careful

\section*{Coefficient of Correlation Examples}

- Here there are obvious patterns here but they are not linear!
- Since, \(r\), measures the linear relationship between two variables \(r=0\) even though there are patterns!
- In each case the best balanced line would be horizontal

\section*{Regression - Making Lines Useful!}
- Regression Line - we make our regression line so that it best fits our data - unlike math it usually isn't a perfect

\[
y=\beta_{\mathbf{0}}+\beta_{\mathbf{1}} x+\in
\]
- Note: we need to estimate these values with our data

\section*{Coefficient of Correlation (r)}
\[
\begin{aligned}
r^{2}= & \frac{\text { Explained sample variability }}{\text { total variability }} \\
& =\frac{S S_{y y}-S S E}{S S_{y y}}=1-\frac{S S E}{S S_{y y}}
\end{aligned}
\]

Where:
\[
\begin{gathered}
S S_{x y}=\sum(x-\bar{x})(y-\bar{y}) \\
S S E=\sum\left(y_{i}-\hat{y}\right)^{2}
\end{gathered}
\]

\section*{When Can We Use Regression?}
- \(\boldsymbol{R}^{\mathbf{2}}\), given in the regression output, gives the percent of variation in the response variable explained by the explanatory variable
- Note: \(R^{2}=r^{2}\)
- Note: \(r=\sqrt{R^{2}}\)

\section*{Estimating \(\sigma\) for a Simple Linear Model}
\[
\begin{aligned}
s_{\epsilon}^{2} & =\frac{\text { SSE }}{\text { Degrees of Freedom for Error }} \\
& =\frac{\mathrm{SSE}}{\mathrm{n}-2}
\end{aligned}
\]

Where: \(S S E=\sum\left(y_{i}-\widehat{y_{i}}\right)^{2}=S S_{y y}-b_{1} S S_{x y}\)

Then: \(s_{\epsilon}=\sqrt{s_{\epsilon}^{2}}=\sqrt{\frac{\text { SSE }}{n-2}}\)

\section*{Hypothesis Testing for paired data \(\mu\) unknown \(\sigma_{d}\)}
\begin{tabular}{|c|c|}
\hline Step One: & \begin{tabular}{l}
(i) \(\mathrm{H}_{0}: \rho \leq \rho_{\mathrm{o}} \& \mathrm{H}_{\mathrm{a}}: \rho>\rho_{\mathrm{o}}\) \\
(ii) \(\mathrm{H}_{0}: \rho \geq \rho_{\mathrm{o}} \& \mathrm{H}_{\mathrm{a}}: \rho<\rho_{\mathrm{o}}\) \\
(iii) \(\mathrm{H}_{0}: \rho=\rho_{\mathrm{o}} \& \mathrm{H}_{\mathrm{a}}: \rho \neq \rho_{\mathrm{o}}\)
\end{tabular} \\
\hline Step Two: & \begin{tabular}{l}
1. The variables must be normally distributed \\
2. There is a linear relationship between the two variables \\
3. Outliers are either kept to a minimum or removed from the data \\
4. Equal variance across random variables
\end{tabular} \\
\hline Step Three: & \[
t^{*}=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}=\frac{b_{1}}{\sqrt{\frac{\text { SSE }}{n-2}}}
\] \\
\hline Step Four: & \begin{tabular}{l}
(i) \(\mathrm{H}_{\mathrm{a}}: \rho>\rho_{\mathrm{o}} \rightarrow \mathrm{p}\)-value \(=\mathrm{P}\left(\mathrm{T}>\mathrm{t}^{*}\right)=1-\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)\) \\
(ii) \(\mathrm{H}_{\mathrm{a}}: \rho<\rho_{\mathrm{o}} \rightarrow \mathrm{p}\)-value \(=\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)\) \\
(iii) \(\mathrm{H}_{\mathrm{a}}: \rho \neq \rho_{\mathrm{o}} \rightarrow \mathrm{p}\)-value \(=2^{*} \mathrm{P}\left(\mathrm{T}<-\left|\mathrm{t}^{*}\right|\right)\)
\end{tabular} \\
\hline Step Five: & \[
\begin{gathered}
\text { If } p \text {-value } \leq(1-\text { confidene })=\alpha \\
\rightarrow \text { Reject } H_{0} \\
\text { If } p \text {-value }>(1-\text { confidence })=\alpha \\
\rightarrow \text { Fail to Reject } H_{0}
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Sampling Distribution of \(b_{1}\)}
- If the assumptions for \(\in\) hold:
\[
\begin{aligned}
\mu_{b_{1}} & =\beta_{1} \\
\sigma_{b_{1}} & =\frac{\sigma_{\epsilon}}{\sqrt{S S_{x x}}} \text { which we estimate with } \frac{s_{\epsilon}}{\sqrt{S S_{x x}}}
\end{aligned}
\]
- We call \(\sigma_{b_{1}}\) the estimated standard error of \(b_{1}\)

\section*{Confidence Intervals for Coefficients}
- Check the assumptions:
- \(\in\) is normally distributed
- \(E(E)=0\)
- \(\operatorname{var}(E)=\sigma^{2}\)
- Each error, \(\in\), is independent
- A 100* \(\left.{ }^{*}-\alpha\right) \%\) confidence interval for \(\beta_{1}\) :
\[
b_{1} \pm\left(t_{1-\frac{\alpha}{2}, n-2}\right) \widehat{S_{b_{1}}}
\]

\section*{Hypothesis Testing for paired data \(\mu\) unknown \(\sigma_{d}\)}
Step One:
Step Two:
(i) \(H_{0}: \beta_{1} \leq \beta_{1_{o}} \& H_{a}: \beta_{1}>\beta_{1_{o}}\)
(ii) \(H_{0}: \beta_{1} \geq \beta_{1_{o}} \& H_{a}: \beta_{1}<\beta_{1_{o}}\)
(iii) \(H_{0}: \beta_{1}=\beta_{1_{o}} \& H_{a}: \beta_{1} \neq \beta_{1_{o}}\)

Step Two:
1. \(\in\) is normally distributed
2. \(E(E)=0\)
3. \(\operatorname{Var}(E)=\sigma_{\epsilon}^{2}\)
4. Each error, \(\in\), is independent

Step Three:
\[
t^{*}=\frac{\left(b_{1}-\mu_{b_{1}}\right)}{\sigma_{b_{1}}}=\frac{\left(b_{1}-\beta_{1_{o}}\right)}{\frac{s_{b_{1}}}{\sqrt{S S_{x x}}}}
\]

Step Four:
(i) \(H_{a}: \beta_{1}>\beta_{1_{o}} \rightarrow \mathrm{p}\)-value \(=\mathrm{P}\left(\mathrm{T}>\mathrm{t}^{*}\right)=1-\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)\)
(ii) \(H_{a}: \beta_{1}<\beta_{1_{o}} \rightarrow \mathrm{p}\)-value \(=\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)\)
(iii) \(H_{a}: \beta_{1} \neq \beta_{1_{o}} \rightarrow \mathrm{p}\)-value \(=2^{*} \mathrm{P}\left(\mathrm{T}<-\left|\mathrm{t}^{*}\right|\right)\)

Step Five:
If \(p\)-value \(\leq(1-\) confidene \()=\alpha\)
\(\rightarrow\) Reject \(H_{0}\)
If \(p\)-value \(>(1-\) confidence \()=\alpha\)
\(\rightarrow\) Fail to Reject \(H_{0}\)

\section*{Prediction/Estimation: Sampling Errors}
- \(\sigma_{y}=\sigma_{\epsilon} \sqrt{\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}}\)
- \(\sigma_{(y-\hat{y})}=\sigma_{\epsilon} \sqrt{1+\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}}\)

\section*{Prediction/Estimation: Confidence Interval}
\[
\begin{array}{r}
\hat{y} \pm t_{1-\frac{\alpha}{2}, n-2} s_{\epsilon} \sqrt{\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}} \\
\hat{y} \pm t_{1-\frac{\alpha}{2}, n-2} s_{\in} \sqrt{1+\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{S S_{x x}}}
\end{array}
\]

\section*{Regression Example In R}
```

library('xlsx')
fileLocation="C:/Users/Will/Desktop/Beer.xlsx"
titles=TRUE
beerdata <- read.xlsx(fileLocation, 1,header=titles)
alcPer<-beerdata[,3]
calories<-beerdata[,4]
mod<-Im(calories~alcPer)
summary(mod)
anova(mod)
plot(alcPer, calories)
abline(mod)

```
```

