
Stat 515: 
Introduction to Statistics 

Chapter 11 



Let’s Review Lines 

• A line is the shortest distance between two 
points. It has no curve, no thickness and it 
extends both ways indefinitely.  

 

• The equation has the following forms 

– Slope Intercept: 𝑦 = 𝑚 ∗ 𝑥 + 𝑏 

– Point-Slope: 𝑦 − 𝑦1 = 𝑚 ∗ 𝑥 − 𝑥1  

 



Lines 

• The y-axis runs vertically where x=0  

 

• The x-axis runs horizontally where y=0.  





Lines 

• The Y-intercept is where the line crosses the y-
axis and can be found by plugging in x=0  
y=m(0)+b=b. So, b is the Y-intercept. 
– This is important because it is the value the 

dependent (response) variable takes when the 
independent (explanatory) variable is zero 

 

• The X-intercept is where the line crosses the x-
axis and can be found by plugging in y=0  
0=mx+b mx=(-b)x=(-b)/m. 





Lines 

• The slope (m) is a measurement of how the line 
changes; it is the number that multiplies x. It can 
be thought of as the change in y for every unit 
change in x,  
– ie. the change in y for every increase of one in x.  

 
• It can be calculated using any two points on the 

line (𝑥1, 𝑦1) and (𝑥2, 𝑦2) as below, but it is given 
by the m term in the equation for the line. 

– 𝑆𝑙𝑜𝑝𝑒 = 𝑚 =
𝑅𝑖𝑠𝑒

𝑅𝑢𝑛
=
𝑦2−𝑦1

𝑥2−𝑥1
 

 





Regression – Making Lines Useful! 

• Unlike the lines we learned in math, our data 
won’t fit the line exactly 
– Math: deterministic model 

– Stats: probabilistic model 

 

• Regression Line – predicts the value for the 
response variable y as a straight line function 
of the value of x, the explanatory variable, 
with some random error 
 



Association of Variables – Two 
Categorical Variables 

• Response Variable – this is our dependent 
variable, the outcome variable on which 
comparisons are made 

• Explanatory Variable – this is our independent 
variable, the groups to be compared with 
respect to values on the response variable 

• Think “we use the explanatory variable to 
EXPLAIN what’s going on with the response 
variable.” 



Examples 

• Example 1: 

– Response: Age of death (quantitative) 

– Explanatory: Cigarettes smoked per day (quantitative) 

 

• The idea here is that an experimental unit’s 
smoking status gives us some of the information 
about how long they will live 

– Actuaries do this sort of thing – evidence has shown 
that smoking decreases your life expectancy. 

https://www.soa.org/research/research-projects/pension/research-factors-affecting-retirement-mortality-farm-smoking.aspx


More Definitions 

• An association or correlation exists between 
two variables if a particular value for one 
variable is more likely to occur with certain 
values of the other variable 

• “Evidence has shown that smoking more decreases 
your life expectancy.” 

• Here we say that there is an association between smoking 
and life expectancy. 



Scatterplots 

• We can compare two quantitative variables 
and explore their association or correlation 
with a scatterplot 

 

• To form a scatterplot we let the response 
variable be the y variable and the explanatory 
variable be the x variable and plot the points 



Scatterplots 



Coefficient of Correlation (r) 

𝑟 =
𝑆𝑆𝑥𝑦

𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦
 

 
Where: 

𝑆𝑆𝑥𝑦 = (𝑥 − 𝑥 )(𝑦 − 𝑦 ) 

𝑆𝑆𝑥𝑥 = 𝑥 − 𝑥 2 = 𝑥2 −
 𝑥 2

𝑛
 

𝑆𝑆𝑦𝑦 = 𝑦 − 𝑦 2 = 𝑦2 −
 𝑦 2

𝑛
 

 



Coefficient of Correlation (r) 

• r measures the LINEAR relationship between x 
and y [linear, linear, linear, linear!!!] 

• r > 0  positive correlation or association 

• r < 0  negative correlation or association 

• r=1  perfect positive correlation or association 
– Here, all points would fit on a line 

• r=-1  perfect negative correlation 
– Here, all points would fit on a line 

• r=0  no correlation 

 



Properties 

• −1 ≤ 𝑟 ≤ 1 

• The closer r is to 1 the stronger the evidence 
for positive association 

• The closer r is to -1 the stronger the evidence 
for a negative association 

• The closer r is to 0 the weaker the evidence 
for association 

• Affected by outliers so we have to be careful 

 

 



Coefficient of Correlation Examples 

• The perfect lines have r=1 or r=-1 depending on the 
sign of their slope not the magnitude of the slope 

• You might think that the plot in the middle has r=1 too 
because it too is fit perfectly by a line. The catch is that 
the line would be horizontal, thus having a slope value 
of zero (no sign.) These dots actually show that the 
explanatory variable provides no explanation for the 
response variable. 



Coefficient of Correlation Examples 

• Again, the perfect lines have r=1 or r=-1 
• The points that don’t make perfect lines have decimal 

values depending on how close they are to a perfect line. 
– The closer r is to 1 the stronger the evidence for positive 

association 
– The closer r is to -1 the stronger the evidence for a negative 

association 
– The closer r is to 0 the weaker the evidence for association 

• Note: their value changes based on how close they are to 
forming a line not the magnitude of the slope 



Coefficient of Correlation Examples 

• Here there are obvious patterns here but they 
are not linear! 

• Since, r, measures the linear relationship 
between two variables r=0 even though there 
are patterns! 
– In each case the best balanced line would be 

horizontal 



Regression – Making Lines Useful! 

• Regression Line – we make our regression line so 
that it best fits our data – unlike math it usually 
isn’t a perfect 

 

 

 
𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙 + ∈ 

 

– Note: we need to estimate these values with our data 

 



Regression – Making Lines Useful! 

• 𝒚 = 𝒃𝟎 + 𝒃𝟏 ∗ 𝒙 + ∈ 

– 𝒃𝟎 is the intercept – when x=0 

• This is important because it is the expected value of the 
response variable, y, when x=0 

– 𝒃𝟏 is the slope of the line 

• This is important because it is the amount that 𝑦  
changes when x increases by one unit 

– 𝒚  is the predicted value for some x 

– ∈ = the residual = (the real y) – 𝑦  

 



Regression – A Way to Find It 

• Least Squares is the most popular method 

– It returns the line that has the smallest value for 
the residual sum of squares in using: 

 

• 𝒚 = 𝒃𝟎 + 𝒃𝟏 ∗ 𝒙 + ∈ 

• Residual Sum of Squares =  𝑦 − 𝑦 2 
 



Regression – A Way to Find It 

• We don’t just draw the ‘best-fit line’ like we 
might have before this class 

• Least squares gives us the solution where the 
total length of blue lines the smallest 



Regression – Least Squares 

• We find 𝑏0 and 𝑏1 such that we minimize the 
sum of squared errors. These estimates are 
called the ordinary least squares estimators – 
we leave this up to software. 

 

• In simple regression  
• 𝒚 = 𝒃𝟎 + 𝒃𝟏 ∗ 𝒙 + ∈ 

• 𝑏0 = 𝑦 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝑦 − 𝑏1 ∗ 𝑥  

• 𝑏1 = 𝑠𝑙𝑜𝑝𝑒 = 𝑟 ∗
𝑠𝑦

𝑠𝑥
 

 



Coefficient of Correlation (r) 

𝑟2 =
𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 

=
𝑆𝑆𝑦𝑦 − 𝑆𝑆𝐸

𝑆𝑆𝑦𝑦
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑦𝑦
 

 

Where: 

𝑆𝑆𝑥𝑦 = (𝑥 − 𝑥 )(𝑦 − 𝑦 ) 

𝑆𝑆𝐸 = (𝑦𝑖 − 𝑦 )
2 



When Can We Use Regression? 

• 𝑹𝟐, given in the regression output, gives the 
percent of variation in the response variable 
explained by the explanatory variable 

 

• Note: 𝑅2 = 𝑟2 

• Note:  𝑟 = 𝑅2 

 



When Can We Use Regression? 

• The scatterplot must show a fairly linear 
relationship 

– A rule of thumb is to look for a coefficient of 
correlation, r > .7 or r < -.7 

– Equivalently, a rule of thumb is to look for a 
coefficient of correlation, 𝑅2 > .49 

 



When Can We Use Regression? 

• Assumptions on ∈ 

 ∈ is normally distributed 

 E(∈)=0 

 Var(∈)=𝜎∈
2 

 Each error, ∈, is independent 

 

• We makes these assumptions so that  
𝐸 𝑦 = 𝛽0 + 𝛽1𝑥 



Estimating 𝜎 for a Simple Linear Model 

𝑠∈
2 =

𝑆𝑆𝐸

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟
 

             =
SSE

n−2
  

Where: 𝑆𝑆𝐸 =  𝑦𝑖 − 𝑦𝑖 
2 = 𝑆𝑆𝑦𝑦 − 𝑏1𝑆𝑆𝑥𝑦 

 

Then: 𝑠∈ = 𝑠∈
2 =

SSE

n−2
 

 



Interpretation of our Estimate of 𝜎  

Applying the Empirical Rule: 

• We expect approximately 90% of observed y 
values to lie within 1𝑠∈ of the estimate 𝑦  

• We expect approximately 95% of observed y 
values to lie within 2𝑠∈ of the estimate 𝑦  

• We expect approximately 99.7% of observed y 
values to lie within 3𝑠∈ of the estimate 𝑦  

 



Interpretation of our Estimate of 𝜎  



Hypothesis testing for r 



Hypothesis Test for Correlation 
Coefficient: Step 1 

• State Hypotheses to some value we’re interested 
in, 𝜌𝑜- it’s usually easier to start with 𝐻𝑎 
– Null hypothesis: we assume that the population 

correlation coefficient equals some 𝜌0 
• 𝐻𝑜: 𝜌 ≤ 𝜌𝑜 = 0 (one sided test) 
• 𝐻𝑜: 𝜌 ≥ 𝜌𝑜 = 0(one sided test) 
• 𝐻𝑜: 𝜌 = 𝜌𝑜 = 0(two sided test) 
 

– Alternative hypothesis: What we’re interested in 
• 𝐻𝑎: 𝜌 > 𝜌𝑜 = 0(one sided test) 
• 𝐻𝑎: 𝜌 < 𝜌𝑜 = 0(one sided test) 
• 𝐻𝑎: 𝜌 ≠ 𝜌𝑜 = 0 (two sided test) 



Hypothesis Test for Correlation 
Coefficient: Step 2 

• Check the assumptions: 

– The variables must be normally distributed 

– There is a linear relationship between the two 
variables 

– Outliers are either kept to a minimum or removed 
from the data 

– Equal variance across random variables 

 

 



Hypothesis Test for Coefficients: Step 3 

• Calculate Test Statistic, t* 
– The test statistic measures how different the 

sample correlation coefficient we have is from the 
null hypothesis 

– We calculate the t-statistic by assuming that 𝜌𝑜 is 
the population coefficient (we use 𝜌 = 𝜌𝑜 = 0) 
• n-2 degrees of freedom 

 

𝑡∗ =
𝑟 𝑛 − 2

1 − 𝑟2
=

𝑏1

SSE
n − 2

 



Hypothesis Test for Coefficients: Step 4 

• Determine the P-value 

– The P-value describes how unusual the sample 
data would be if we use 𝜌 = 𝜌𝑜 

– t* is the test statistic from step 3 with n-2 dof 

 
Alternative 
Hypothesis 

Probability Formula for the  
P-value 

𝐻𝑎: 𝛽1 > 𝛽1𝑜  Right tail 1-P(T<t*) 

𝐻𝑎: 𝛽1 < 𝛽1𝑜 Left tail P(T<t*) 

𝐻𝑎: 𝛽1 ≠ 𝛽1𝑜 Two-tail 2P(T<-|t*|) 



Hypothesis Test for Coefficients: Step 5 

• Summarize the test by reporting and interpreting 
the P-value 
– Smaller p-values give stronger evidence against 𝐻𝑜 

• If p-value≤ 1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = α 
– Reject 𝐻𝑜, with a p-value = ____, we have sufficient 

evidence that the alternative hypothesis might be true 

• If p-value> 1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = α 
– Fail to reject 𝐻𝑜, with a p-value = ____, we do not 

have sufficient evidence that the alternative 
hypothesis might be true 

 



Using the Sampling Distribution of 𝑏1 

Confidence Interval for 𝛽1 



Sampling Distribution of 𝑏1 

• If the assumptions for ∈ hold: 

𝜇𝑏1 = 𝛽1  

𝜎𝑏1 =
𝜎∈

𝑆𝑆𝑥𝑥
  which we estimate with 

𝑠∈

𝑆𝑆𝑥𝑥
 

 

• We call 𝜎𝑏1the estimated standard error of 𝑏1 



Confidence Intervals for Coefficients 

• Check the assumptions: 

• ∈ is normally distributed 

• E(∈)=0 

• var(∈)=𝜎2 

• Each error, ∈, is independent 

 

• A 100*(1-𝜶)% confidence interval for 𝜷𝟏: 
𝑏1 ± 𝑡

1−
𝛼
2
𝑠𝑏1  



Using the Sampling Distribution of 𝑏1 

Hypothesis Test for 𝛽1 



Hypothesis Test for Coefficients: Step 1 

• State Hypotheses to some value we’re interested in, 
𝛽𝑜- it’s usually easier to start with 𝐻𝑎 
– Null hypothesis: we assume that the population 

coefficient equals some𝛽10 
• 𝐻𝑜: 𝛽1 ≤ 𝛽1𝑜 (one sided test) 

• 𝐻𝑜: 𝛽1 ≥ 𝛽1𝑜 (one sided test) 

• 𝐻𝑜: 𝛽1 = 𝛽1𝑜 (two sided test) 

 

– Alternative hypothesis: What we’re interested in 
• 𝐻𝑎: 𝛽1 > 𝛽1𝑜 (one sided test) 

• 𝐻𝑎: 𝛽1 < 𝛽1𝑜 (one sided test) 

• 𝐻𝑎: 𝛽1 ≠ 𝛽1𝑜 (two sided test) 



Hypothesis Test for Coefficients: Step 2 

• Check the assumptions: 

 ∈ is normally distributed 

 E(∈)=0 

 Var(∈)=𝜎∈
2 

 Each error, ∈, is independent 

 



Hypothesis Test for Coefficients: Step 3 

• Calculate Test Statistic, t* 
– The test statistic measures how different the 

sample coefficient we have is from the null 
hypothesis 

– We calculate the t-statistic by assuming that 𝛽1𝑜 is 
the population coefficient (we use 𝛽1 = 𝛽1𝑜) 
• n-2 degrees of freedom 

 

𝑡∗ =
(𝑏1 − 𝜇𝑏1)

𝜎𝑏1
=
(𝑏1 − 𝛽1𝑜)
𝑠𝑏1
𝑆𝑆𝑥𝑥

 



Hypothesis Test for Coefficients: Step 4 

• Determine the P-value 

– The P-value describes how unusual the sample 
data would be if we use 𝛽1 = 𝛽10 

– t* is the test statistic from step 3 with n-2 dof 

 
Alternative 
Hypothesis 

Probability Formula for the  
P-value 

𝐻𝑎: 𝛽1 > 𝛽1𝑜  Right tail 1-P(T<t*) 

𝐻𝑎: 𝛽1 < 𝛽1𝑜 Left tail P(T<t*) 

𝐻𝑎: 𝛽1 ≠ 𝛽1𝑜 Two-tail 2P(T<-|t*|) 



Hypothesis Test for Coefficients: Step 5 

• Summarize the test by reporting and interpreting 
the P-value 
– Smaller p-values give stronger evidence against 𝐻𝑜 

• If p-value≤ 1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = α 
– Reject 𝐻𝑜, with a p-value = ____, we have sufficient 

evidence that the alternative hypothesis might be true 

• If p-value> 1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = α 
– Fail to reject 𝐻𝑜, with a p-value = ____, we do not 

have sufficient evidence that the alternative 
hypothesis might be true 

 



Hypothesis Test for Coefficients: Step 5 

• We get the p-values from R for: 

– 𝐻𝑜: 𝛽1 = 0  

– 𝐻𝑎: 𝛽1 ≠ 0  

 

• This tests whether or not our explanatory 
variable is “statistically significant” in 
modeling the response variable 

  



Using Regression Models for 
Prediction/Estimation Confidence Intervals 



Prediction/Estimation: Sampling Errors 

• 𝜎𝑦 = 𝜎∈
1

𝑛
+
𝑥𝑝−𝑥 

2

𝑆𝑆𝑥𝑥
  

• 𝜎(𝑦−𝑦 ) = 𝜎∈ 1 +
1

𝑛
+
𝑥𝑝−𝑥 

2

𝑆𝑆𝑥𝑥
  

 



Prediction/Estimation: 
Confidence Interval 

𝑦 ± 𝑡
1−
𝛼
2
,𝑛−2
𝑠∈ 1 +

1

𝑛
+
𝑥𝑝 − 𝑥 

2

𝑆𝑆𝑥𝑥
 

 

• We call this a confidence interval for the 
observed y value of an observation with x=𝑥𝑝 

• This gives us a 100*(1- 𝛼) confidence interval 
for an observation with x=𝑥𝑝. 

 

 



Prediction/Estimation: 
Confidence Interval 

𝑦 ± 𝑡
1−
𝛼
2
,𝑛−2
𝑠∈
1

𝑛
+
𝑥𝑝 − 𝑥 

2

𝑆𝑆𝑥𝑥
 

 

• We call this a confidence interval for the mean of 
observations with x=𝑥𝑝 (Like sampling dist.) 

• This gives us a 100*(1- 𝛼) confidence interval for 
the mean of observations with x=𝑥𝑝. 



Regression Example 

• In creating beer yeast and sugar react to 
create alcohol – the idea being, the more 
sugar and yeast you add the more alcohol the 
batch yields. It would then make sense that 
the more alcohol in the beer the more 
carbohydrates there are thus more calories – 
but who are we to make such assertions? Let 
us show it statistically. 

 



Regression Example In R 

library('xlsx') 
fileLocation="C:/Users/Will/Desktop/Beer.xlsx"  
titles=TRUE 
beerdata <- read.xlsx(fileLocation, 1,header=titles) 
 
alcPer<-beerdata[,3] 
calories<-beerdata[,4] 
 
mod<-lm(calories~alcPer) 
summary(mod) 
anova(mod) 
 
plot(alcPer, calories) 
abline(mod) 



Regression Example 

• The points are fit by the line pretty well, but we see that a 
couple points with alcPer below 1 are strange 



Regression Example 



Regression Example 



Regression Example 



Regression Example 



Regression Example 



Regression Example 



Regression Example 



Regression Example 



Regression Example 



Regression Example 

• 𝒚 = 𝟑𝟖. 𝟎𝟔𝟔 + 𝟐𝟐. 𝟎𝟏𝟓 ∗ 𝒙 + ∈ 
• Where 𝒚  is the estimated calories and x is the alcPer 

• The overall F test has a very low p-value so our 
model is capturing something 

• 𝑟 = 𝑅2 = .4801 = .6928925 is close compared 
to our .7 benchmark so we have an “okay” model 

• The P(>|t|) is small for alcPer so it is 
significant in terms of it’s ability to predict or 
model calories 

 

 



Regression Example 

• 𝑆𝑆𝐸 =  𝑦𝑖 − 𝑏0 + 𝑏1𝑥
2 

• 𝑆𝑆𝑥𝑦 =  𝑥𝑖𝑦𝑖 −
 𝑥𝑖  𝑦𝑖

𝑛
 

• 𝑆𝑆𝑥𝑥 =  𝑥𝑖
2 −

 𝑥𝑖
2

𝑛
 

 

• Recall: 𝑏1 = 𝑠𝑙𝑜𝑝𝑒 =
𝑆𝑆𝑥𝑦

𝑆𝑆𝑥𝑥
= 𝑟 ∗

𝑠𝑦

𝑠𝑥
 

 



Regression Example 

sum((calories-(38.066+22.015*alcPer))^2)   #SSE 
sum(calories*alcPer)-(sum(calories)*sum(alcPer))/nrow(beerdata) ##SSxy 
sum(alcPer^2)-(sum(alcPer))^2/nrow(beerdata)  ##SSxx 
1800.977/81.80595  ##B1 



Regression Example 

• (Est Calories) = 38.066+ 22.015 ∗ (Alcohol %) 

 

• 𝒃𝟎= 38.066  is the intercept 

• The expected number of calories of a beer with 0% 
alcohol is 38.066.  

• 𝒃𝟏=22.015 is the slope of the line 

• For every additional percent in alcohol percentage in 
beer we expect the number of calories to increase by 
22.015 on average. 



Confidence Intervals for Coefficients 

• A 100*(1-𝜶)% confidence interval for 𝜷𝟏: 
𝑏1 ± 𝑡

1−
.05
2
,101−2

𝑠𝑏1  

22.015 ± (1.984217)(2.302) 
(17.44733, 26.58267) 

 

We are 95% confident that the true population 
coefficient, 𝛽1, is between 17.45 and 26.58. 



Hypothesis Testing for paired data 
𝜇 unknown 𝜎𝑑 

Step One:  𝐻0: 𝛽1 = 23  
𝐻𝑎: 𝛽1 ≠ 23  

Step Two: 1. ∈ is normally distributed 
2. E(∈)=0 
3. Var(∈)=σ∈

2 
4. Each error, ∈, is independent 

Step Three:  
𝑡∗ =

(22.015 − 23)

2.302
= −.4278888 

Step Four: 𝐻𝑎: 𝛽1 ≠23 p-value = 2*P(T<−|−.4278888|)=.669662 

Step Five:  .669662 > 1 − .95 =.05  Fail to Reject 𝐻0 



Regression Example 

• (Est Calories) = 38.066+ 22.015 ∗ (Alcohol %) 

 

• 𝑹𝟐 = .4801 

• 48.01% of the variation in calories in beer is explained 
by alcohol 

• 𝑟 = 𝑅2 = .4801 = .6928925 

• Since r is very close to one we have a very strong 
positive correlation 

 



Regression Example 
Step One:  H0: ρ ≤ 0   

Ha: ρ > 0  

Step Two: 1. The variables must be normally distributed 
2. There is a linear relationship between the two variables 
3. Outliers are either kept to a minimum or removed from the data 
4. Equal variance across random variables 

Step Three:  
t∗ =

r n − 2

1 − r2
=
.6928925 101 − 2

1 − .4801
= 9.561445 

Step Four: Ha: ρ > 0  p-value = P(T>9.561445) = 1-P(T<9.561445)≈ 0 

Step Five:  0 ≤ 1 − .95 = .05  Reject H0 



Regression Example 

• If we wanted to estimate the calories of my 
favorite beer, Rogue Dead Guy, we can plug in its 
alcohol percentage into the equation to find an 
estimate of the calories.  

• If the Alcohol % = 6.5% for Rogue Dead Guy we 
can plug it in to find the estimated calories of 
Rogue Dead Guy. 

• (Est Calories) = 38.066+ 22.015 ∗ (Alcohol %) 
   = 38.066+ 22.015 ∗ (6.5) 
   =  181.1635 

 



Regression Example 

• So, the estimated amount of calories for 
Rogue Dead Guy is 181.163587.  

• In fact, the actual amount of calories is 250 so 
our estimate isn’t very good, though it might 
be better than a random guess. 

• The residual is the difference 

• true – estimate = 250-181.163587=68.83641. 



Regression Example 

𝑦 ± 𝑡
1−
.05
2
,101−2

𝑠∈
1

𝑛
+
𝑥𝑝 − 𝑥 

2

𝑆𝑆𝑥𝑥
 

181.1635 ± 1.984217 20.82
1

101
+

6.5− 4.738416 2

81.80595
 

(172.1283, 190.1987) 

 

We are 95% confident that the true mean, y, of 
all observations of alcPer 6.5 is between 
172.1283 and 190.1987 



Regression Example 

𝑦 ± 𝑡
1−
.05
2
,101−2

𝑠∈ 1 +
1

𝑛
+
𝑥𝑝 − 𝑥 

2

𝑆𝑆𝑥𝑥
 

181.1635 ± 1.984217 20.82 1 +
1

101
+

6.5− 4.738416 2

81.80595
 

(138.8756, 223.4514) 

 

We are 95% confident that the true value, y, of 
an observation of alcPer 6.5 is between 
138.8756 and 223.4514. 



Regression Example 

• Issues: 

– Look at the data: was that “weird point” an 
outlier? Is it representative? 

– What happens if we “fix” it or remove it from the 
data set? 

– Did we prove that alcPer causes calories in beer? 

– Is our model okay to use with a beer that has 6.5% 
alcohol percentage? 



Regressions – Problems 

• Extrapolation – We don’t want to predict using x 
values different than the known data 

• Influential Outliers – a single point can really 
change the fit of the regression line – always 
check for stray points in the scatterplot 

• Correlation does not imply causation – wait for it 

• Lurking Variables – a variable that we don’t look 
at that causes the correlation (hot summers) 



Regressions – Problems 

Credit: XKCD 



Correlation vs. Causation 

• The idea here is that although some variables 
are correlated they one might not be the 
cause of the other. 

 

• Let’s  revisit 
http://www.tylervigen.com/?categoria=%22di
nero%22 

 

http://www.tylervigen.com/?categoria="dinero"
http://www.tylervigen.com/?categoria="dinero"


• Correlation does not imply causation 

– We go from saying there exists a correlation to 
saying that one variable’s change causes the other 
to change. 

Regressions – Problems 

Credit: XKCD 



Regression Introduction 

• Set up and example using Facebook!* 

 https://www.youtube.com/watch?v=zPG4NjIkCjc 

 

https://www.youtube.com/watch?v=nw6GOUtC2jY
https://www.youtube.com/watch?v=zPG4NjIkCjc
https://www.youtube.com/watch?v=zPG4NjIkCjc


Summary! 



Response Variable  this is our dependent variable, the 
outcome variable on which 
comparisons are made 

Explanatory Variable  this is our independent variable, 
the groups to be compared with 
respect to values on the response 
variable 

Association or Correlation  exists between two variables if a 
particular value for one variable is 
more likely to occur with certain 
values of the other variable 



Comparing Two Quantitative Variables 

Scatterplot let the response variable be the y 
variable and the explanatory variable be 
the x variable and plot the points 

Regression Line predicts the value for the response 
variable y as a straight line function of 
the value of x, the explanatory variable 

𝒚 = 𝒃𝟏 ∗ 𝒙 + 𝒃𝟎 

Intercept 𝒃𝟎 this is the expected value of y when x 
is zero 

Slope 𝒃𝟏 this is the amount that 𝒚  changes by 
when x increases by one unit 



Comparing Two Quantitative Variables 

𝑹𝟐 = 𝑟2 gives the percent of variation in 𝑦 
explained by x 

𝒓 = 𝑅2  measures the LINEAR relationship 
between x and y 

Estimate 𝒚  for a given x Plug x into the regression equation 
𝒚 = 𝒃𝟏 ∗ 𝒙 + 𝒃𝟎 

Residual Residual = (the real y) – 𝒚  



Coefficient of Correlation (r) 

𝑟 =
𝑆𝑆𝑥𝑦

𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦
 

 
Where: 

𝑆𝑆𝑥𝑦 = (𝑥 − 𝑥 )(𝑦 − 𝑦 ) 

𝑆𝑆𝑥𝑥 = 𝑥 − 𝑥 2 = 𝑥2 −
 𝑥 2

𝑛
 

𝑆𝑆𝑦𝑦 = 𝑦 − 𝑦 2 = 𝑦2 −
 𝑦 2

𝑛
 

 



Coefficient of Correlation (r) 

• r measures the LINEAR relationship between x 
and y [linear, linear, linear, linear!!!] 

• r > 0  positive correlation or association 

• r < 0  negative correlation or association 

• r=1  perfect positive correlation or association 
– Here, all points would fit on a line 

• r=-1  perfect negative correlation 
– Here, all points would fit on a line 

• r=0  no correlation 

 



Properties 

• −1 ≤ 𝑟 ≤ 1 

• The closer r is to 1 the stronger the evidence 
for positive association 

• The closer r is to -1 the stronger the evidence 
for a negative association 

• The closer r is to 0 the weaker the evidence 
for association 

• Affected by outliers so we have to be careful 

 

 



Coefficient of Correlation Examples 

• Here there are obvious patterns here but they 
are not linear! 

• Since, r, measures the linear relationship 
between two variables r=0 even though there 
are patterns! 
– In each case the best balanced line would be 

horizontal 



Regression – Making Lines Useful! 

• Regression Line – we make our regression line so 
that it best fits our data – unlike math it usually 
isn’t a perfect 

 

 

 
𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙 + ∈ 

 

– Note: we need to estimate these values with our data 

 



Coefficient of Correlation (r) 

𝑟2 =
𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 

=
𝑆𝑆𝑦𝑦 − 𝑆𝑆𝐸

𝑆𝑆𝑦𝑦
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑦𝑦
 

 

Where: 

𝑆𝑆𝑥𝑦 = (𝑥 − 𝑥 )(𝑦 − 𝑦 ) 

𝑆𝑆𝐸 = (𝑦𝑖 − 𝑦 )
2 



When Can We Use Regression? 

• 𝑹𝟐, given in the regression output, gives the 
percent of variation in the response variable 
explained by the explanatory variable 

 

• Note: 𝑅2 = 𝑟2 

• Note:  𝑟 = 𝑅2 

 



Estimating 𝜎 for a Simple Linear Model 

𝑠∈
2 =

𝑆𝑆𝐸

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟
 

             =
SSE

n−2
  

Where: 𝑆𝑆𝐸 =  𝑦𝑖 − 𝑦𝑖 
2 = 𝑆𝑆𝑦𝑦 − 𝑏1𝑆𝑆𝑥𝑦 

 

Then: 𝑠∈ = 𝑠∈
2 =

SSE

n−2
 

 



Hypothesis Testing for paired data 
𝜇 unknown 𝜎𝑑 

Step One:  (i)   H0: ρ ≤ ρo & Ha: ρ > ρo 
(ii ) H0: ρ ≥ ρo & Ha: ρ < ρo 
(iii) H0: ρ = ρo & Ha: ρ ≠ ρo 

Step Two: 1. The variables must be normally distributed 
2. There is a linear relationship between the two variables 
3. Outliers are either kept to a minimum or removed from the data 
4. Equal variance across random variables 

Step Three:  
t∗ =

r n − 2

1 − r2
=

b1

SSE
n − 2

 

Step Four: (i) Ha: ρ > ρo p-value = P(T>t*) = 1-P(T<t*) 
(ii)  Ha: ρ < ρo p-value = P(T<t*) 
(iii) Ha: ρ ≠ ρop-value = 2*P(T<-|t*|) 

Step Five:  If p-value≤ 1 − confidene = α  
               Reject H0 
If p-value> 1 − confidence = α 
               Fail to Reject H0 



Sampling Distribution of 𝑏1 

• If the assumptions for ∈ hold: 

𝜇𝑏1 = 𝛽1  

𝜎𝑏1 =
𝜎∈

𝑆𝑆𝑥𝑥
  which we estimate with 

𝑠∈

𝑆𝑆𝑥𝑥
 

 

• We call 𝜎𝑏1the estimated standard error of 𝑏1 



Confidence Intervals for Coefficients 

• Check the assumptions: 

• ∈ is normally distributed 

• E(∈)=0 

• var(∈)=𝜎2 

• Each error, ∈, is independent 

 

• A 100*(1-𝜶)% confidence interval for 𝜷𝟏: 
𝑏1 ± 𝑡1−𝛼

2
,𝑛−2

𝑠𝑏1  



Hypothesis Testing for paired data 
𝜇 unknown 𝜎𝑑 

Step One:  (i)   𝐻0: 𝛽1 ≤ 𝛽1𝑜 & 𝐻𝑎: 𝛽1 > 𝛽1𝑜 

(ii ) 𝐻0: 𝛽1 ≥ 𝛽1𝑜 & 𝐻𝑎: 𝛽1 < 𝛽1𝑜 

(iii) 𝐻0: 𝛽1 = 𝛽1𝑜 & 𝐻𝑎: 𝛽1 ≠ 𝛽1𝑜 

Step Two: 1. ∈ is normally distributed 
2. E(∈)=0 
3. Var(∈)=σ∈

2 
4. Each error, ∈, is independent 

Step Three:  
𝑡∗ =

(𝑏1 − 𝜇𝑏1)

𝜎𝑏1
=
(𝑏1 − 𝛽1𝑜)
𝑠𝑏1
𝑆𝑆𝑥𝑥

 

Step Four: (i)   𝐻𝑎: 𝛽1 > 𝛽1𝑜 p-value = P(T>t*) = 1-P(T<t*) 

(ii)  𝐻𝑎: 𝛽1 < 𝛽1𝑜 p-value = P(T<t*) 

(iii) 𝐻𝑎: 𝛽1 ≠ 𝛽1𝑜 p-value = 2*P(T<-|t*|) 

Step Five:  If p-value≤ 1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑒 = α  
               Reject 𝐻0 
If p-value> 1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = α 
               Fail to Reject 𝐻0 



Prediction/Estimation: Sampling Errors 

• 𝜎𝑦 = 𝜎∈
1

𝑛
+
𝑥𝑝−𝑥 

2

𝑆𝑆𝑥𝑥
  

• 𝜎(𝑦−𝑦 ) = 𝜎∈ 1 +
1

𝑛
+
𝑥𝑝−𝑥 

2

𝑆𝑆𝑥𝑥
  

 



Prediction/Estimation: 
Confidence Interval 

𝑦 ± 𝑡
1−
𝛼
2
,𝑛−2
𝑠∈
1

𝑛
+
𝑥𝑝 − 𝑥 

2

𝑆𝑆𝑥𝑥
 

 

𝑦 ± 𝑡
1−
𝛼
2
,𝑛−2
𝑠∈ 1 +

1

𝑛
+
𝑥𝑝 − 𝑥 

2

𝑆𝑆𝑥𝑥
 



Regression Example In R 

library('xlsx') 
fileLocation="C:/Users/Will/Desktop/Beer.xlsx"  
titles=TRUE 
beerdata <- read.xlsx(fileLocation, 1,header=titles) 
 
alcPer<-beerdata[,3] 
calories<-beerdata[,4] 
 
mod<-lm(calories~alcPer) 
summary(mod) 
anova(mod) 
 
plot(alcPer, calories) 
abline(mod) 


